
Applying Competitive Policy Optimization to Pokémon Battling
SHATAYU KULKARNI and KAMYAR AZIZZADENESHELI, Purdue University, USA
Pokémon is a popular video game involving a turn-based strategy mechanic
called "battling". Battling involves building a team beforehand and employ-
ing complex tactics in-game, making it an interesting two-part problem to
be solved. We seek to apply Competitive Policy Optimization (CoPO) to
Pokémon battling and test its performance against humans on the online
ladder Pokémon Showdown. At this time, a simplified problem involving an
agent playing against itself with a fixed team was solved using an algorithm
derived from Competitive Policy Optimization. The agent demonstrated
knowledge of advanced strategies and successfully defeated two heuristics-
based agents at about a 90% rate.

CCS Concepts: • Computing methodologies→ Probabilistic reasoning;
Planning under uncertainty;Multi-agent planning.

Additional Key Words and Phrases: reinforcement learning, multi-agent
reinforcement learning, self-play, deep learning, neural networks

ACM Reference Format:
Shatayu Kulkarni and Kamyar Azizzadenesheli. 2021. Applying Competitive
Policy Optimization to Pokémon Battling. 1, 1 (March 2021), 6 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Multi-agent reinforcement learning is an emerging and highly pop-
ular way to discover optimal strategies to multiplayer games and
similar dilemmas. It was first used by DeepMind to solve the single-
player game Atari [3]. Ever since then, it has been used for more
complex games, such as chess [7] and DoTA 2 [1]. Many find it
attractive due to the intuitive nature of formulating a problem -
with states, rewards, and actions - and the lack of a need to create
a dataset. One only simply has to define the information required
above, which is often self-evident in a problem, and then let the
algorithm run until it converges. Oftentimes, multi-agent reinforce-
ment learning algorithms can converge upon unexpected, although
highly effective, strategies that lead to new insight on how to play
the game being studied.

Competitive policy optimization (CoPO) is a novel policy gradient
approach that exploits the game-theoretic nature of competitive
games to derive policy updates [6]. It uses a bilinear approximation
of the game objective to capture interactions between players. This
concept begets two algorithms, Competitive Policy Gradient and
Trust Region Competitive Policy Optimization. We will use Compet-
itive Policy Gradient due to its increased stability relative to Trust
Region Competitive Policy Optimization. A critical advantage of the

Authors’ address: Shatayu Kulkarni, shatayu@purdue.edu; Kamyar Azizzadenesheli,
kamyar@purdue.edu, Purdue University, 305 N University Street, West Lafayette, IN,
USA, 47906.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from shatayu@purdue.edu.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/3-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

algorithms derived from CoPO is that it allows an agent to reason
about its opponent’s potential actions and responses to its actions.
In Pokémon, this means that it can potentially learn "gamesman-
ship" where it can make a move in response to what it predicts
its opponent to do. In this paper, we will use Competitive Policy
Gradient to derive an optimal strategy for Pokémon.
Pokémon is a popular multiplayer game played online. The fun-

damental format is two players with teams of six creatures (called
Pokémon) battle in a turn-based setting. Creatures have health,
moves, abilities, and various stats associated with them. Pokémon
face off one at a time, with the currently active Pokémon being
replaced upon losing all of its health (referred to in-game as be-
ing "knocked out"). Each turn, players simultaneously select one of
four moves their Pokémon has or they switch to one of their other
Pokémon. A series of in-game rules decides whose action goes first.
If a Pokémon is knocked out before it gets to use its move, then
the person whose Pokémon was knocked out does not execute any
action until after the turn ends, when they will be given the option
to send out another Pokémon.

2 RELATED WORK
There have been a few instances of using self-play methods in Poké-
mon Showdown. The Generalized Infinitesimal Gradient Ascent al-
gorithm applied with the Win or Learn Fast principle (GIGA-WoLF)
was able to converge to optimal behavior in a fixed, disadvanta-
geous situation [8]. In another example of self-play, an actor-critic
algorithm [2] was used to attain a Glicko-1 rating of 1677 against
humans on the Pokémon Showdown random ladder, which roughly
corresponds to having a 72% chance of defeating a opponent cho-
sen uniformly at random from the Pokémon Showdown ladder [2].
The random ladder is the environment where the team is randomly
chosen before battle, thus removing the burden of team-building
from the player.
There have also been efforts to create a rule-based bot for Poké-

mon battles. The most notable is named pmariglia [4], which was
able to reach a Glicko-1 rating of 1625 on the OU ladder, which
corresponds to a high level of skill - but not extraordinary - on the
Pokémon Showdown ladder against real-life humans. It was also
able to get to a Glicko-1 rating of 1633 in the Randoms ladder, which
means it has a solid general understanding of how to play with a
plethora of teams against opponents using many different teams
(albeit without familiarity with those teams).

This work, unlike the self-play works listed, aims to compete
in the standard "OverUsed" (OU) ladder on Pokémon Showdown,
which requires the player to design their own team prior to bat-
tle. For the purposes of this paper, this was done by studying a
fixed team. Using a fixed team allows the agent to learn intricate
strategies incorporated into the specific team as opposed to generic
tactics such as exploiting type matchups. The agent will have the
opportunity to experiment with matters such as which Pokémon
to lead with and which matchups it prefers. This work is also not
deterministic, like pmariglia, which means it has the opportunity

, Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Kulkarni and Azizzadenesheli

to learn new strategies not envisioned by a human. The tactics the
agent employs will be solely discovered through its own exploration
of its environment’s state space.

3 MOTIVATION
Pokémon battling is a complex game with billions of different states.
While there has been work on creating battling algorithms, applying
Competitive Policy Optimization creates the potential for different,
novel strategies. Moreover, its application to the standard battling
format gives it the potential to develop more specialized solutions
involving knowledge of its specific team as opposed to a general
sense of "fundamentals" as proposed by other algorithms. Lastly,
demonstrating the competence of this algorithm in turnmeans it can
be applied to other multifaceted domains such as sports, robotics,
and other strategy games.

4 OVERVIEW OF MULTI-AGENT REINFORCEMENT
LEARNING

Multi-agent reinforcement learning is a problem involving two or
more agents making decisions sequentially. It is modeled using a
competitive Markov Decision Process where exactly two agents
play a zero-sum game. The Markov Decision Process is modeled
using a tuple (S1,S2,A1,A2,R1,R2,T ,P, 𝛾). The agents aim to
maximize the reward functions R1 and R2. Since this is a zero
sum game, R1 = −R2. They take actions 𝑎1 ∈ A1, 𝑎2 ∈ A2 when
in states 𝑠1 ∈ S1, 𝑠2 ∈ S2. The state the agents transition to upon
performing an action in a state depends on the transition probability
𝑇 (𝑠 ′ |𝑠, 𝑎1, 𝑎2) ∈ T . In the next state, the agents select actions and
the process continues. This continues until the model converges,
which is judged by either letting the model train for a fixed number
of epochs or by analytically judging the reward earned until the
programmer is satisfied.

Multi-agent reinforcement learning is used to model Pokémon as
opposed to single-agent reinforcement learning because the intrinsic
nature of the game, with two opponents competing against each
other, means that multi-agent reinforcement learning algorithms
can be used to derive an optimal strategy for the game. Another
advantage of using multi-agent reinforcement is that this agent
does not "overfit" to counter any particular strategy or take undue
influence from existing play. Being free of data derived from humans,
such as logs of battles conducted by highly skilled humans, means
that the agent is free to explore the state space and learn novel
strategies that a human observer can learn from.

5 OVERVIEW OF COMPETITIVE POLICY
OPTIMIZATION

Players aremodeled using stochastic policies𝜋 (𝑎1
𝑘
|𝑠𝑘 ;𝜃1) and𝜋 (𝑎2𝑘 |𝑠𝑘 ;𝜃

2).
Agents then generate trajectories with distribution is denoted by:

𝑓 (𝜏 ;𝜃1, 𝜃2) = 𝑝 (𝑠0)Π |𝜏 |−1
𝑘=0 𝜋 (𝑎1

𝑘
|𝑠𝑘 ;𝜃1)𝜋 (𝑎2𝑘 |𝑠𝑘 ;𝜃

2)𝑇 (𝑠𝑘+1 |𝑠𝑘 , 𝑎1𝑘 , 𝑎
2
𝑘
)

From here, the value of a state 𝑠𝑘 can be defined as

𝑉 (𝑠𝑘 ;𝜃1, 𝜃2) = 𝐸𝑡 𝑓 (·;𝜃 1,𝜃 2) [Σ
|𝜏 |−1
𝑗=𝑘

𝛾 𝑗−𝑘𝑟 (𝑠 𝑗 , 𝑎1𝑗 , 𝑎
2
𝑗) |𝑠𝑘]

This function 𝑉 (𝑠) represents the expected value of how much
reward an agent can earn from a state 𝑠𝑘 following policy 𝜋 (𝜃1)
and 𝜋 (𝜃2).

Now that𝑉 (𝑠) is defined, the game objective can be thought of in
terms of maximizing or minimizing 𝑉 (𝑠0), the expected value from
the starting state. Game objective can be defined as

𝜂 (𝜃1, 𝜃2) =
∫
𝑠0

𝑝 (𝑠0)𝑉 (𝑠0;𝜃1, 𝜃2)𝑑𝑠0

which is the expected value of all state distributions. As a con-
sequence, the objectives of each agent can be interpreted with the
below two equations respectively:

𝜃1∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 1∈Θ1𝜂 (𝜃1, 𝜃2)

𝜃2∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 2∈Θ2𝜂 (𝜃1, 𝜃2)
Competitive Policy Optimization exploits the game-theoretic and

competitive nature of Competitive Markov Decision Processes and
deploys a bilinear approximation of the game objectives for each
agent:

𝑎𝑟𝑔𝑚𝑎𝑥Δ𝜃 1:Δ𝜃 1+𝜃 1∈Θ1Δ𝜃1𝑇𝐷𝜃 1𝜂 + Δ𝜃1𝑇𝐷𝜃 1𝜃 2𝜂Δ𝜃2 − 1
2𝛼

| |Δ𝜃1 | |2

𝑎𝑟𝑔𝑚𝑖𝑛Δ𝜃 2:Δ𝜃 2+𝜃 2∈Θ2Δ𝜃2𝑇𝐷𝜃 2𝜂 + Δ𝜃1𝑇𝐷𝜃 1𝜃 2𝜂Δ𝜃2 − 1
2𝛼

| |Δ𝜃2 | |2

The bilinear term 𝐷𝜃 1𝜃 2𝜂 is the smallest order term that can
capture interdependence between agents. It still retains the property
of being linear with respect to each player. The update rule is given
by solving the two systems of linear equations in Δ𝜃1 and Δ𝜃2

respectively and is given by:

The advantage of this system is that it allows the agent to reason
about its interactions with its opponent as well as its interactions
with the environment. This allows it to develop significantly more
complex strategies since it can identify the best action for a given
state while factoring in what its opponent may do to it.

For more detail, see the original paper [6].

6 OVERVIEW OF COMPETITIVE POLICY GRADIENT
This is the algorithm derived from the principles of Competitive
Policy Optimization. Given a CoMDP, players 𝑖, 𝑗 ∈ 1, 2, 𝑖 ≠ 𝑗, and
the policy parameters 𝜃𝑖 , 𝜃 𝑗 :

𝐷𝜃𝑖𝜂 =

∫
𝜏

Σ
|𝜏 |−1
𝑘=0 𝛾𝑘 𝑓 (𝜏0:𝑘 ;𝜃1, 𝜃2)𝐷𝜃𝑖 (log𝜋 (𝑎𝑖𝑘 |𝑠𝑘 ;𝜃

𝑖))𝑄 (𝑠𝑘 , 𝑎1𝑘 , 𝑎
2
𝑘
;𝜃1, 𝜃2)𝑑𝜏

𝐷𝜃𝑖𝜃 𝑗𝜂 = (1) :
∫
𝜏

Σ
|𝜏 |−1
𝑘=0 𝛾𝑘 𝑓 (𝜏0:𝑘 ;𝜃1, 𝜃2)𝐷𝜃𝑖 (log𝜋 (𝑎𝑖𝑘 |𝑠𝑘 ;𝜃

𝑖)))

𝐷𝜃 𝑗 (log𝜋 (𝑎𝑖
𝑘
|𝑠𝑘 ;𝜃𝑖))𝑇𝑄 (𝑠𝑘 , 𝑎1𝑘 , 𝑎

2
𝑘
;𝜃1, 𝜃2)𝑑𝜏

, Vol. 1, No. 1, Article . Publication date: March 2021.

Applying Competitive Policy Optimization to Pokémon Battling • 3

+(2) :
∫
𝜏

Σ
|𝜏 |−1
𝑘=0 𝛾𝑘 𝑓 (𝜏0:𝑘 ;𝜃1, 𝜃2)𝐷𝜃𝑖 (logΠ𝑘−1

𝑙=0 𝜋 (𝑎
𝑖
𝑙
|𝑠𝑙 ;𝜃𝑖)))

𝐷𝜃 𝑗 (log𝜋 (𝑎𝑖
𝑘
|𝑠𝑘 ;𝜃𝑖))𝑇𝑄 (𝑠𝑘 , 𝑎1𝑘 , 𝑎

2
𝑘
;𝜃1, 𝜃2)

+(3) :
∫
𝜏

Σ
|𝜏 |−1
𝑘=0 𝛾𝑘 𝑓 (𝜏0:𝑘 ;𝜃1, 𝜃2)𝐷𝜃𝑖 (logΠ𝑘−1

𝑙=0 𝜋 (𝑎
𝑗

𝑙
|𝑠𝑙 ;𝜃 𝑗)))

𝐷𝜃 𝑗 (log𝜋 (𝑎𝑖
𝑘
|𝑠𝑘 ;𝜃𝑖))𝑇𝑄 (𝑠𝑘 , 𝑎1𝑘 , 𝑎

2
𝑘
;𝜃1, 𝜃2)𝑑𝜏

Proofs are available in the original paper [6]. The gradient term is
a generalization of policy gradient [9] to competitive multiplayer. In
the bilinear term, term (1) corresponds to the immediate interaction
between players. Term (2) corresponds to player 𝑖’s behavior up
to time step 𝑘 with consideration of the reaction of player 𝑗 ’s at
time step 𝑘 and the environment. Term (3) corresponds to player
𝑗 ’s behavior up to time step 𝑘 with consideration of the reaction of
player 𝑖’s at time step 𝑘 and the environment.
This algorithm operates in epochs. It starts by collecting trajec-

tories based on its existing policy 𝜋 (𝜃1) and 𝜋 (𝜃2). From there, it
estimates 𝑄 , 𝐷𝜃𝑖 , and 𝐷𝜃𝑖𝜃 𝑗 . It then updates its parameters 𝜃𝑖 and
𝜃 𝑗 using the rules described above and then repeats. For full details,
see the original paper.

7 GAME SETUP
The agent was given a preset team of three Pokémon, each with
their own set of 4 moves. These moves included a mix of damage-
dealing moves, strategic moves that put the active Pokémon in
advantageous positions, and moves that dealt less damage but also
had other strategic benefits. The full team is detailed in Appendix
A.

The action space includes up to 6 distinct actions - using any of
the Pokémon’s 4 available moves or switching to any of the other
2 Pokémon available. If a Pokémon faints, or if a move runs out of
uses, then that action is no longer available to the agent. The state
space - the space the agent was made aware of - was the current
turn, whether its active Pokémon had fainted or not, the number of
healthy (non-fainted) Pokémon it had, the number of moves it had,
and if its active Pokémon was fainted or not. The reward function
was sparse; merely a 1 if the agent won the battle, a -1 if the agent
lost, and 0 for all other moves.

The agent’s performance was measured against two deterministic
agents; one which selected moves randomly (the "random" agent)
and one which selected its most damaging move (the "max-damage"
agent).
The agent played itself a total of 50,000 times to converge to a

previously unknown optimal strategy. This was done on a personal
laptop over the course of approximately 36 hours. In each interval of
training, the agent would train for 50 episodes, each with a batch size
of 50. After each interval of training, the agent’s performance was
benchmarked against the two deterministic agents described before
by battling each of them 100 times. There were 20 such intervals
of training. The agents played with the same team that the agent
trained against. The agent, however, did not update its policy during
these test battles, meaning the agent did not train or influence its

learning in any way based on the events or outcomes of the test
battles against deterministic agents.

8 RESULTS

Fig. 1. Percentage of the time that the CoPG agent won against the max-
damage agent over each of its 20 training iterations. After 20 iterations, it
converged to a 91% win rate against the max-damage agent.

Fig. 2. Percentage of the time that the CoPG agent won against the max-
damage agent over each of its 20 training iterations. After 20 iterations, it
converged to a 91% win rate against the max-damage agent.

After 20 training rounds, the CoPG agent ended up with a 91%
winrate against the random agent and an 89% winrate against the
max-damage agent. Based on the graphs, one can observe that the
agent’s winrates against the random and max-damage agents follow
a relatively volatile, but steadily increasing trend.

Upon manual inspection, despite the relatively limited amount of
information available to the CoPG agent, it learned several sophisti-
cated tactics. For example, it learned how to use setup moves like
Swords Dance and Substitute that in early-game situations where it
was not as likely to die. It also learned to use high-damage moves
that had a good chance of dealing significant damage regardless of
which of the opponent’s Pokémon were out.

, Vol. 1, No. 1, Article . Publication date: March 2021.

4 • Kulkarni and Azizzadenesheli

However, the agent was not perfect. It did not always immediately
use "useful" moves. For example, it would sometimes use moves
that did not effect the opponent, as a result throwing away the
turn. It also did not always switch into advantageous matchups or
take opportunities to use setup moves that it could have. A smarter
opponent would have capitalized on these openings and defeated
the agent with these opponents. It is worth noting that the agent
did not have very much information to work with; it could not
recognize the Pokémon in front of it, which in turn limited it from
finding strategies to specifically counter the opponent.
The agent also left several strategies on the board. One under-

utilized move was Knock Off, which has significant value in terms
of removing the opponent’s items as well as doing decent damage.
The agent never used it, which meant it either found the move to
be relatively low-value or did not explore it sufficiently. It also did
not seem to favor specific lineups; it led with all three Pokémon at
relatively frequent rates and instead used different strategies based
on the game situation.

We also find that the strategies that the agent could develop were
limited by a simple state space. It could only exhibit knowledge
of early-game and late-game strategies. It had to deduce which
Pokémon was active from leading with a Pokémon of its choice and
switching its Pokémon around and observing the states resulted
from that move, which in turn means it was likely not able to create
strategies predicated on its active Pokémon and certainly not its
opponent.

In summary, the agent did learn various smart, optimal strategies.
However, it only employed them some of the time. The rest of the
time, it defaulted to using damaging moves, which worked out
typically but not as efficiently as it could’ve been.

9 CONCLUSION
In conclusion, we found that using Competitive Policy Gradient
on this specific instance of a Pokémon battle did lead to the agent
learning several sophisticated strategies and achieving highly suc-
cessful winrates against the two deterministic agents it was tested
on. However, it did not use them all the time due to the limited
information it had to work with. This bears significant promise for
expanding the information available to the agent and the complexity
of the game.

The implication, therefore, is that Competitive Policy Gradient is
a viable algorithm for discovering strategies in zero-sum competitive
games of a complex nature. It was able to make moves exploiting
its opponent’s actions and setting itself up for success later down
the game. Its success against deterministic opponents means that
it can learn an opponent’s strategy and come up with its own to
counter with, which means that it is a viable tool when studying
how to defeat an opponent with a specific known "style".

10 FUTURE PLANS
Future work will be done to nuance the agent to understand more
states, play more complex games, and learn how to build a team.
The immediate next step is to make the agent more aware of its

state. At this time, the agent is only aware of extremely minimal
information. Implementing awareness of the opponent’s healthy

Pokémon, what information has been revealed over the course of
the game, and its own state will enable the agent to make more
sophisticated decisions and employ more nuanced strategies over
the course of the game. A key inclusion in the future will be the
teams of the agent itself and its opponent. Inclusion of this agent will
allow the agent to directly reason about lineups and come up with
strategies accordingly. This would unlock many of the strategies
enabled by team composition and move selection, such as using
Knock off to get rid of items.
From there, another action of note is to train the agent to play

against more kinds of opponents. Currently, it trains exclusively
with one team to fight against one team. Letting the agent learn
how to play with and against many different teams will make it
more versatile and intelligent, especially if it can learn how to use
strategies learned from one team with others. This will enable the
agent to also measure its performance against real-life humans,
which is a key milestone in using this algorithm to tackle complex
problems in many domains.

Lastly, the agent will be set up to play online against real humans
on the Pokémon Showdown online ladder. It will compete against
other humans and its Elo rating will be monitored as a measure of its
abilities. This Elo ratingwill be compared against other deterministic
algorithms and known artificial-intelligence based algorithms to
benchmark this algorithm’s performance in this game.
Another long-term goal is to learn the team-building stage of

Pokémon battling. Team-building will present additional challenges
in terms of the state space and action space, but the process to
generate an optimal strategy with Competitive Policy Optimization
will remain the same.

11 ACKNOWLEDGEMENTS
The author would like to thank Manish Prajapat for his help in
understanding the Competitive Policy Optimization algorithm and
with his help in troubleshooting the code used to run the experi-
ments for this project.

The author would also like to thank Discord user HSahovic, cre-
ator of the poke-env environment, for providing various instances
of boilerplate code on interacting with the poke-env environment
to help development of this project.

, Vol. 1, No. 1, Article . Publication date: March 2021.

Applying Competitive Policy Optimization to Pokémon Battling • 5

REFERENCES
[1] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw

Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher
Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael
Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy
Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and
Susan Zhang. 2019. Dota 2 with Large Scale Deep Reinforcement Learning. CoRR
abs/1912.06680 (2019). arXiv:1912.06680 http://arxiv.org/abs/1912.06680

[2] Dan Huang and Scott Lee. 2019. A Self-Play Policy Optimization Approach to
Battling Pokémon. In 2019 IEEE Conference on Games (CoG). 1–4. https://doi.org/
10.1109/CIG.2019.8848014

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[4] Pmariglia. [n. d.]. PMARIGLIA/Showdown: A pokemon showdown battle bot
written in python. https://github.com/pmariglia/showdown

[5] pokeaimmd. [n. d.]. peak 3 in ou by doublevee. https://pokepast.es/
78d5c6bf90f769de

[6] Manish Prajapat, Kamyar Azizzadenesheli, Alexander Liniger, Yisong Yue, and
Anima Anandkumar. 2020. Competitive Policy Optimization. CoRR abs/2006.10611
(2020). arXiv:2006.10611 https://arxiv.org/abs/2006.10611

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy P. Lillicrap, Karen Simonyan, and Demis Hassabis. 2017. Mastering Chess
and Shogi by Self-Play with a General Reinforcement Learning Algorithm. CoRR
abs/1712.01815 (2017). arXiv:1712.01815 http://arxiv.org/abs/1712.01815

[8] David Simões, Simão Reis, Nuno Lau, and Luís Paulo Reis. 2020. Competitive
Deep Reinforcement Learning over a Pokémon Battling Simulator. In 2020 IEEE
International Conference on Autonomous Robot Systems and Competitions (ICARSC).
40–45. https://doi.org/10.1109/ICARSC49921.2020.9096092

[9] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 2000.
Policy Gradient Methods for Reinforcement Learning with Function Approxima-
tion. In Advances in Neural Information Processing Systems, S. Solla, T. Leen, and
K. Müller (Eds.), Vol. 12. MIT Press. https://proceedings.neurips.cc/paper/1999/
file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

12 APPENDIX A: THE POKÉMON TEAM
The team is listed in the standard Pokémon Showdown format.
These 3 Pokémon were taken from a team which peaked at 3 overall
on the Pokémon Showdown OU ladder [5].
These moves represent a variety of moves which allow for the

agent to express a breadth of strategy. For example, Substitute’s
inclusion allowed the agent to potentially try to learn how to set up a
Substitute sweep on a safe turn. Similarly, Roost and Dragon Dance
on Dragonite allowed the agent to use Dragonite as a primarily
offensive Pokémon and a defensive one depending on the game. The
inclusion of items on each Pokémon gives Knock Off, a move which
removes items from Pokémon, additional value.
The inclusion of Tapu Fini also introduces a new nuance, the

Terrain. Misty Terrain halves the power of Dragon-type moves,
which reduce the effectiveness of Dragonite’s moves even if Tapu
Fini itself is not active. It also prevents Ice Punch and Ice Bream
from freezing the opponent, which is a relatively low-probability
event which would have a significant impact on game outcomes in
the event where it occurs. Tapu Fini forces the agent to come up
with novel strategies to eliminate Tapu Fini from battle before using
Dragonite or learn how to play with a Dragonite at significantly
reduced effectiveness while Tapu Fini’s effects last.

The items serve to nuance the Pokémon’s usages while also serv-
ing to increase the value of Knock Off, one of Tapu Fini’s moves.
Leftovers on Mamoswine make it bulkier, while the Expert Belt
on Tapu Fini makes its moves deal more damage. Using Knock Off
on Tapu Fini or Mamoswine, therefore, makes these Pokémon less
powerful and bulky, respectively.
Together, these moves, items, and team composition give the

agent the opportunity to develop many deep and nuanced strate-
gies, which in turn serve to help evaluate the effectiveness of the
algorithm at understanding the game and how to develop complex
tactics.

Tapu Fini @ Expert Belt
Ability: Misty Surge
EVs: 4 Def / 252 SpA / 252 Spe
Modest Nature
- Hydro Pump
- Ice Beam
- Moonblast
- Knock Off

Mamoswine @ Leftovers
Ability: Thick Fat
EVs: 252 Atk / 4 SpD / 252 Spe
Adamant Nature
- Earthquake
- Icicle Crash
- Ice Shard
- Substitute

Dragonite @ Heavy-Duty Boots
Ability: Multiscale
EVs: 248 HP / 52 Atk / 56 Def / 152 Spe
Adamant Nature

, Vol. 1, No. 1, Article . Publication date: March 2021.

https://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
https://doi.org/10.1109/CIG.2019.8848014
https://doi.org/10.1109/CIG.2019.8848014
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://github.com/pmariglia/showdown
https://pokepast.es/78d5c6bf90f769de
https://pokepast.es/78d5c6bf90f769de
https://arxiv.org/abs/2006.10611
https://arxiv.org/abs/2006.10611
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.1109/ICARSC49921.2020.9096092
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

6 • Kulkarni and Azizzadenesheli

- Dragon Dance
- Ice Punch
- Earthquake
- Roost

13 APPENDIX B: THE COMPETITIVE POLICY
GRADIENT ALGORITHM

Algorithm 1 Competitive Policy Gradient

𝜃1 → random values
𝜃2 → random values
for epoch 1, 2, 3... until termination do

Collect samples under 𝜋 (.|.;𝜃1), 𝜋 (.|.;𝜃2)
Estimate 𝑄 , then 𝐷𝑡ℎ𝑒𝑡𝑎𝑖𝜂, 𝐷𝜃𝑖𝜃 𝑗𝜂

Update 𝜃1, 𝜃2
end for

, Vol. 1, No. 1, Article . Publication date: March 2021.

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Overview of Multi-Agent Reinforcement Learning
	5 Overview of Competitive Policy Optimization
	6 Overview of Competitive Policy Gradient
	7 Game setup
	8 Results
	9 Conclusion
	10 Future Plans
	11 Acknowledgements
	References
	12 Appendix A: The Pokémon Team
	13 Appendix B: The Competitive Policy Gradient Algorithm

